In:
Advanced Materials, Wiley, Vol. 32, No. 43 ( 2020-10)
Abstract:
Perovskite solar cells (PSCs) have rapidly developed and achieved power conversion efficiencies of over 20% with diverse technical routes. Particularly, planar‐structured PSCs can be fabricated with low‐temperature (≤150 °C) solution‐based processes, which is energy efficient and compatible with flexible substrates. Here, the efficiency and stability of planar PSCs are enhanced by improving the interface contact between the SnO 2 electron‐transport layer (ETL) and the perovskite layer. A biological polymer (heparin potassium, HP) is introduced to regulate the arrangement of SnO 2 nanocrystals, and induce vertically aligned crystal growth of perovskites on top. Correspondingly, SnO 2 –HP‐based devices can demonstrate an average efficiency of 23.03% on rigid substrates with enhanced open‐circuit voltage ( V OC ) of 1.162 V and high reproducibility. Attributed to the strengthened interface binding, the devices obtain high operational stability, retaining 97% of their initial performance (power conversion efficiency, PCE 〉 22%) after 1000 h operation at their maximum power point under 1 sun illumination. Besides, the HP‐modified SnO 2 ETL exhibits promising potential for application in flexible and large‐area devices.
Type of Medium:
Online Resource
ISSN:
0935-9648
,
1521-4095
DOI:
10.1002/adma.202003990
Language:
English
Publisher:
Wiley
Publication Date:
2020
detail.hit.zdb_id:
1474949-X