Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Advanced Materials Vol. 34, No. 27 ( 2022-07)
    In: Advanced Materials, Wiley, Vol. 34, No. 27 ( 2022-07)
    Abstract: The practical application of the Zn‐metal anode for aqueous batteries is greatly restricted by catastrophic dendrite growth, intricate hydrogen evolution, and parasitic surface passivation. Herein, a polyanionic hydrogel film is introduced as a protective layer on the Zn anode with the assistance of a silane coupling agent (denoted as Zn–SHn). The hydrogel framework with zincophilic –SO 3 − functional groups uniformizes the zinc ions flux and transport. Furthermore, such a hydrogel layer chemically bonded on the Zn surface possesses an anti‐catalysis effect, which effectively suppresses both the hydrogen evolution reaction and formation of Zn dendrites. As a result, stable and reversible Zn stripping/plating at various currents and capacities is achieved. A full cell by pairing the Zn–SHn anode with a NaV 3 O 8 ·1.5 H 2 O cathode shows a capacity of around 176 mAh g −1 with a retention around 67% over 4000 cycles at 10 A g −1 . This polyanionic hydrogel film protection strategy paves a new way for future Zn‐anode design and safe aqueous batteries construction.
    Type of Medium: Online Resource
    ISSN: 0935-9648 , 1521-4095
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1474949-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages