In:
Advanced Materials Technologies, Wiley
Abstract:
Most current visual pressure sensing devices are greatly limited by less integrated functions. To address this issue, a multi‐dimensional pressure interactive visual monitoring device is proposed based on the temperature and humidity adaptive hydrogel. Specifically, this device is composed of a buffer grid layer that divides it into pressure sensing and luminous display areas. With a double network structure incorporated with a LiBr liquid, the pressure sensing area demonstrates great deformability, resilience, and self‐absorption. In a dynamic mode, the best pressure can be detected at high humidity and low temperature, displaying a range of up to 45 N and offering feedback at a minimum load of 0.25 N. Importantly, the device remaines excellent performance after the dynamic compression repeating over 1300 cycles. In static mode, MPI‐ACEL achieves a delay time of up to 390 min. Finally, it is anticipated that this multifunctional device will provide a new, flexible, and effective scheme for visual pressure sensing, environmental adaptive directional indication, and multi‐dimensional remote monitoring.
Type of Medium:
Online Resource
ISSN:
2365-709X
,
2365-709X
DOI:
10.1002/admt.202301289
Language:
English
Publisher:
Wiley
Publication Date:
2023
detail.hit.zdb_id:
2850995-X