Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Optical Materials, Wiley, Vol. 12, No. 9 ( 2024-03)
    Abstract: Practical application of two‐dimensional transition metal dichalcogenides (2D TMDCs) involves creating a p‐n diode and a Schottky diode. Unlike p‐n diodes, the research of 2D material‐based Schottky diodes especially in the application field of photodetectors is lacking. Here, a Schottky diode is fabricated by depositing Pt and Ni on the MoS 2 to form Schottky and ohmic contacts, respectively. The MoS 2 Schottky diode exhibits a rectification ratio of 2.36 × 10 3 and an ideality factor of 1.12. The electrical characteristics of Ni‐MoS 2 ‐Ni and Pt‐MoS 2 ‐Pt field effect transistors are systematically compared. The Schottky barrier height is estimated to be 94.2 meV by using the thermionic emission theory. The Schottky diode device can exhibit excellent self‐powered photodetection performance in the visible to near‐infrared region (447‐940 nm) due to the strong built‐in electric field originating from the Schottky barrier at the MoS 2 /Pt interface. The maximum detectivity reaches 2.09 × 10 12 Jones with a response time of 52.6 ms under 940 nm laser illumination. Furthermore, the photodetection performance of such a Schottky diode can be further improved by NH 3 plasma doping treatment. This work provides not only a simple approach to construct a 2D materials‐based Schottky diode photodetector but also a post treatment technique to further improve the device performance.
    Type of Medium: Online Resource
    ISSN: 2195-1071 , 2195-1071
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2708158-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages