Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Science, Wiley, Vol. 6, No. 23 ( 2019-12)
    Abstract: Metamaterials/metasurfaces, which have subwavelength resonating unit cells (i.e., meta‐atoms), can enable unprecedented control over the flow of light. Despite their significant progress, achieving dynamical control of both energy and momentum of light remains a challenge. Here, a mechanically tunable metawall capable of either absorbing light energy or modulating light momentum, by incorporating the magnetic meta‐atoms into a 3D printed origami grating, is theoretically designed and experimentally realized. Through mechanical stretching or compressing of the Miura‐ori pattern, the function of metawall can transit from an absorber, a mirror, to a negative reflector. Particularly, the continuously geometric deformation of the Miura‐ori lattice is a promising approach to compensate the angular dispersion in gradient metasurfaces. Considering the prominent mechanical properties and strong deformation abilities of origami structures, the findings may open an alternative avenue toward lightweight and deployable metadevices with diversified and continuously alterable electromagnetic properties.
    Type of Medium: Online Resource
    ISSN: 2198-3844 , 2198-3844
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2808093-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages