Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Advanced Science, Wiley
    Abstract: Nanotransfer printing (nTP) is one of the most promising nanopatterning methods given that it can be used to produce nano‐to‐micro patterns effectively with functionalities for electronic device applications. However, the nTP process is hindered by several critical obstacles, such as sub‐20 nm mold technology, reliable large‐area replication, and uniform transfer‐printing of functional materials. Here, for the first time, a dual nanopatterning process is demonstrated that creates periodic sub‐20 nm structures on the eight‐inch wafer by the transfer‐printing of patterned ultra‐thin ( 〈 50 nm) block copolymer (BCP) film onto desired substrates. This study shows how to transfer self‐assembled BCP patterns from the Si mold onto rigid and/or flexible substrates through a nanopatterning method of thermally assisted nTP (T‐nTP) and directed self‐assembly (DSA) of Si‐containing BCPs. In particular, the successful microscale patternization of well‐ordered sub‐20 nm SiO x patterns is systematically presented by controlling the self‐assembly conditions of BCP and printing temperature. In addition, various complex pattern geometries of nano‐in‐micro structures are displayed over a large patterning area by T‐nTP, such as angular line, wave line, ring, dot‐in‐hole, and dot‐in‐honeycomb structures. This advanced BCP‐replicated nanopatterning technology is expected to be widely applicable to nanofabrication of nano‐to‐micro electronic devices with complex circuits.
    Type of Medium: Online Resource
    ISSN: 2198-3844 , 2198-3844
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2808093-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages