Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Angewandte Chemie, Wiley, Vol. 129, No. 51 ( 2017-12-18), p. 16470-16474
    Abstract: By using ethylene glycol and monocarboxylic acid as surface ligands, a series of cyclic Ti‐oxo clusters (CTOC) with permanent microporosity are successfully synthesized. With a cyclic {Ti 32 O 16 } backbone made of eight connected Ti 4 tetrahedral cages that are arranged in a zigzag fashion, the clusters have a “donut” shape with an inner diameter of 8.3 Å, outer diameter of 26.9 Å and height of 10.4 Å. While both inner and outer walls of the “donut” clusters are modified by double‐deprotonated ethylene glycolates, their upper and lower surfaces are bound by carboxylates and mono‐deprotonated ethylene glycolates. The clusters are readily packed into one‐dimensional tubes which are further arranged in two different modes into crystalline microporous solids with surface areas over 660 m 2  g −1 , depending on the surface carboxylates. The solid with olefin‐bearing carboxylates exhibits a superior CO 2 adsorption capacity of 40 cm 3  g −1 at 273 K under 1 atm. Moreover, the mono‐deprotonated ethylene glycolates on the clusters are demonstrated to be highly exchangeable by other alcohols, providing a nice platform for creating microporous solids or films with a wide variety of surface functionalities.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages