Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Angewandte Chemie Vol. 133, No. 11 ( 2021-03-08), p. 5782-5786
    In: Angewandte Chemie, Wiley, Vol. 133, No. 11 ( 2021-03-08), p. 5782-5786
    Abstract: NH 4 + ions as charge carriers show potential for aqueous rechargeable batteries. Studied here for the first time is the NH 4 + ‐storage chemistry using electrodeposited manganese oxide (MnO x ). MnO x experiences morphology and phase transformations during charge/discharge in dilute ammonium acetate (NH 4 Ac) electrolyte. The NH 4 Ac concentration plays an important role in NH 4 + storage for MnO x . The transformed MnO x with a layered structure delivers a high specific capacity (176 mAh g −1 ) at a current density of 0.5 A g −1 , and exhibits good cycling stability over 10 000 cycles in 0.5 M NH 4 Ac, outperforming the state‐of‐the‐art NH 4 + hosting materials. Experimental results suggest a solid‐solution behavior associated with NH 4 + migration in layered MnO x . Spectroscopy studies and theoretical calculations show that the reversible NH 4 + insertion/deinsertion is accompanied by hydrogen‐bond formation/breaking between NH 4 + and the MnO x layers. These findings provide a new prototype (i.e., layered MnO x ) for NH 4 + ‐based energy storage and contributes to the fundamental understanding of the NH 4 + ‐storage mechanism for metal oxides.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages