In:
Birth Defects Research Part B: Developmental and Reproductive Toxicology, Wiley, Vol. 98, No. 3 ( 2013-06), p. 283-295
Abstract:
Ethanol is a powerful substance and, when consumed during pregnancy, has significant psychoactive and developmental effects on the developing fetus. These abnormalities include growth retardation, neurological deficits, and behavioral and cognitive deficiencies, commonly referred to as fetal alcohol spectrum disorder. The effect of ethanol has been reported to affect cellular development on the embryonic level, however, not much is known about mutations contributing to the influence of ethanol. The purpose of our study was to determine if mutation contribute to changes in differentiation patterning, cell‐cycle regulatory gene expression, and DNA methylation in human embryonic stem cells after ethanol exposure. We exposed human embryonic stem cells (with and without know DNA mutations) to a low concentration (20 mM) of ethanol and measured neurosphere proliferation and differentiation, glial protein levels, expression of various cell‐cycle genes, and DNA methylation. Ethanol altered cell‐cycle gene expression between the two cell lines; however, gene methylation was not affected in ether lines.. Birth Defects Res (Part B) 98:283–295, 2013. © 2013 Wiley Periodicals, Inc.
Type of Medium:
Online Resource
ISSN:
1542-9733
,
1542-9741
DOI:
10.1002/bdrb.2013.98.issue-3
Language:
English
Publisher:
Wiley
Publication Date:
2013
detail.hit.zdb_id:
2108625-4