Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Biometrical Journal Vol. 60, No. 4 ( 2018-07), p. 827-844
    In: Biometrical Journal, Wiley, Vol. 60, No. 4 ( 2018-07), p. 827-844
    Abstract: Diagnostic or screening tests are widely used in medical fields to classify patients according to their disease status. Several statistical models for meta‐analysis of diagnostic test accuracy studies have been developed to synthesize test sensitivity and specificity of a diagnostic test of interest. Because of the correlation between test sensitivity and specificity, modeling the two measures using a bivariate model is recommended. In this paper, we extend the current standard bivariate linear mixed model (LMM) by proposing two variance‐stabilizing transformations: the arcsine square root and the Freeman–Tukey double arcsine transformation. We compared the performance of the proposed methods with the standard method through simulations using several performance measures. The simulation results showed that our proposed methods performed better than the standard LMM in terms of bias, root mean square error, and coverage probability in most of the scenarios, even when data were generated assuming the standard LMM. We also illustrated the methods using two real data sets.
    Type of Medium: Online Resource
    ISSN: 0323-3847 , 1521-4036
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 131640-0
    detail.hit.zdb_id: 1479920-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages