Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Wiley ; 2008
    In:  Journal of Chemometrics Vol. 22, No. 11-12 ( 2008-11), p. 580-586
    In: Journal of Chemometrics, Wiley, Vol. 22, No. 11-12 ( 2008-11), p. 580-586
    Kurzfassung: In chemometric studies all predictor variables are usually collected in one data matrix X . This matrix is then analyzed by PLS regression or other methods. When data from several different sub‐processes are collected in one matrix, there is a possibility that the effects of some sub‐processes may vanish. If there is, for instance, mechanic data from one process and spectral data from another, the influence of the mechanic sub‐process may not be detected. An application of multi‐block (MB) methods, where the X ‐data are divided into several data blocks is presented in this study. By using MB methods the effect of a sub‐process can be seen and an example with two blocks, near infra‐red, NIR, and process data, is shown. The results show improvements in modelling task, when a MB‐based approach is used. This way of working with data gives more information on the process than if all data are in one X ‐matrix. The procedure is demonstrated by an industrial continuous process, where knowledge about the sub‐processes is available and X ‐matrix can be divided into blocks between process variables and NIR spectra. Copyright © 2008 John Wiley & Sons, Ltd.
    Materialart: Online-Ressource
    ISSN: 0886-9383 , 1099-128X
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2008
    ZDB Id: 2001613-X
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz