Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Carbon Energy, Wiley
    Abstract: Redox–enzyme‐mediated electrochemical processes such as hydrogen production, nitrogen fixation, and CO 2 reduction are at the forefront of the green chemistry revolution. To scale up, the inefficient two‐dimensional (2D) immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system. Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices. However, several requirements, such as simple immobilization, prolonged stability, and resistance to enzyme leakage, still need to be addressed. The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyl‐diphenylalanine. Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry, allowing the rapid loading of enzymes on a 3D electrode under mild conditions. Using the [FeFe] hydrogenase enzyme, high enzyme loads, prolonged resistance against electrophoresis, and highly efficient hydrogen production are demonstrated. Further, this enzyme retention is shown to arise from its interaction with the peptide nanofibrils. Finally, this method is successfully used to retain other redox enzymes, paving the way for a variety of enzyme‐mediated electrochemical applications.
    Type of Medium: Online Resource
    ISSN: 2637-9368 , 2637-9368
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3009616-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages