Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hydrological Processes, Wiley, Vol. 30, No. 19 ( 2016-09-15), p. 3390-3407
    Abstract: Fens, which are among the most biodiverse of wetland types in the USA, typically occur in glacial landscapes characterized by geo‐morphologic variability at multiple spatial scales. As a result, the hydrologic systems that sustain fens are complex and not well understood. Traditional approaches for characterizing such systems use simplifying assumptions that cannot adequately capture the impact of variability in geology and topography. In this study, a hierarchical, multi‐scale groundwater modelling approach coupled with a geologic model is used to understand the hydrology of a fen in Michigan. This approach uses high‐resolution data to simulate the multi‐scale topographic and hydrologic framework and lithologic data from more than 8500 boreholes in a statewide water well database to capture the complex geology. A hierarchy of dynamically linked models is developed that simulates groundwater flow at all scales of interest and to delineate the areas that contribute groundwater to the fen. The results show the fen receiving groundwater from multiple sources: an adjacent wetland, local recharge, a nearby lake and a regional groundwater mound. Water from the regional mound flows to an intermediate source before reaching the fen, forming a ‘cascading’ connection, while other sources provide water through ‘direct’ connections. The regional mound is also the source of water to other fens, streams and lakes in this area, thus creating a large, interconnected hydrologic system that sustains the entire ecosystem. In order to sustainably manage such systems, conservation efforts must include both site‐based protection and management, as well as regional protection and management of groundwater source areas. Copyright © 2016 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages