Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Biophotonics Vol. 12, No. 3 ( 2019-03)
    In: Journal of Biophotonics, Wiley, Vol. 12, No. 3 ( 2019-03)
    Abstract: The benchmark method for the evaluation of breast cancers involves microscopic testing of a hematoxylin and eosin (H & E)‐stained tissue biopsy. Resurgery is required in 20% to 30% of cases because of incomplete excision of malignant tissues. Therefore, a more accurate method is required to detect the cancer margin to avoid the risk of recurrence. In the recent years, convolutional neural networks (CNNs) has achieved excellent performance in the field of medical images diagnosis. It automatically extracts the features from the images and classifies them. In the proposed study, we apply a pretrained Inception‐v3 CNN with reverse active learning for the classification of healthy and malignancy breast tissue using optical coherence tomography (OCT) images. This proposed method attained the sensitivity, specificity and accuracy is 90.2%, 91.7% and 90%, respectively, with testing datasets collected from 48 patients (22 normal fibro‐adipose tissue and 26 Invasive ductal carcinomas cancerous tissues). The trained network utilizes for the breast cancer margin assessment to predict the tumor with negative margins. Additionally, the network output is correlated with the corresponding histology image. Our results lay the foundation for the future that the proposed method can be used to perform automatic intraoperative identification of breast cancer margins in real‐time and to guide core needle biopsies.
    Type of Medium: Online Resource
    ISSN: 1864-063X , 1864-0648
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2403788-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages