Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2013
    In:  Journal of Biomedical Materials Research Part A Vol. 101A, No. 4 ( 2013-04), p. 1095-1102
    In: Journal of Biomedical Materials Research Part A, Wiley, Vol. 101A, No. 4 ( 2013-04), p. 1095-1102
    Abstract: The objective of the present in vitro study was to investigate cardiomyocyte functions, specifically their adhesion and proliferation, on injectable scaffolds containing RNT (rosette nanotubes) and CNF (carbon nanofibers) in a pHEMA (poly(2‐hydroxyethyl methacrylate)) hydrogel to determine their potential for myocardial tissue engineering applications. RNTs are novel biocompatible nanomaterials assembled from synthetic analogs of DNA bases guanine and cytosine that self‐assemble within minutes when placed in aqueous solutions at body temperatures. These materials could potentially improve cardiomyocyte functions and solidification time of pHEMA and CNF composites. Because heart tissue is conductive, CNFs were added to pHEMA to increase the composite's conductivity. Our results showed that cardiomyocyte density increased after 4 h, 1 day, and 3 days with greater amounts of CNFs and greater amounts of RNTs in pHEMA (up to 10 mg mL −1 CNFs and 0.05 mg mL −1 RNTs). Factors that may have increased cardiomyocyte functions include greater wettability, conductivity, and an increase in surface nanoroughness with greater amounts of CNFs and RNTs. In effect, contact angles measured on the surface of the composites decreased while the conductivity and surface roughness increased as CNFs and RNTs content increased. Lastly, the ultimate tensile modulus decreased for composites with greater amounts of CNFs. In summary, the properties of these injectable composites make them promising candidates for myocardial tissue engineering applications and should be further studied. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.
    Type of Medium: Online Resource
    ISSN: 1549-3296 , 1552-4965
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2013
    detail.hit.zdb_id: 1477192-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages