Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Cellular Biochemistry, Wiley, Vol. 113, No. 3 ( 2012-03), p. 888-898
    Abstract: Human adipose‐derived stem cells (hADSC) are capable of differentiating into an osteogenic lineage. It is believed that microRNAs (miRNAs) play important roles in regulating this osteogenic differentiation of human adipose‐derived cells, although its molecular mechanism remains unclear. We investigated the miRNA expression profile during osteogenic differentiation of hADSCs, and assessed the roles of involved miRNAs during the osteogenic differentiation. We obtained and cultured human adipose‐derived stems cells from donors who underwent elective liposuction or other abdominal surgery at our institution. miRNA expression profiles pre‐ and post‐osteogenic induction were obtained using microarray essay, and differently expressed miRNAs were verified using quantitative real‐time polymerase chain reaction (qRT‐PCR). The expression of osteogenic proteins was detected using an enzyme‐linked immunosorbent assay. Putative targets of the miRNAs were predicted using online software MiRanda, TargetScan, and miRBase. Eight miRNAs were found differently expressed pre‐ and post‐osteogenic induction, among which four miRNAs (miR‐17, miR‐20a, miR‐20b, and miR‐106a) were up‐regulated and four miRNAs (miR‐31, miR‐125a‐5p, miR‐125b, and miR‐193a) were down‐regulated. qRT‐PCR analysis further confirmed the results. Predicted target genes of the differentially expressed miRNAs based on the overlap from three public prediction algorithms: MiRanda, TargetScan, and miRBase Target have the known functions of regulating stem cell osteogenic differentiation, self‐renewal, signal transduction, and cell cycle control. We identified a group of miRNAs that may play important roles in regulating hADSC cell differentiation toward an osteoblast lineage. Further study of these miRNAs may elucidate the mechanism of hADSC differentiation into adipose tissue, and thus provide basis for tissue engineering. J. Cell. Biochem. 113: 888–898, 2012. © 2011 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0730-2312 , 1097-4644
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 1479976-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages