Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2001
    In:  Microscopy Research and Technique Vol. 55, No. 3 ( 2001-11), p. 181-186
    In: Microscopy Research and Technique, Wiley, Vol. 55, No. 3 ( 2001-11), p. 181-186
    Abstract: Nitric oxide (NO) is a short‐living free molecule synthesized by three different isoforms of nitric oxide synthases (NOS)—neuronal NOS, endothelial NOS, and inducible NOS—associated with neuromuscular transmission, muscle contractility, mitochondrial respiration, and carbohydrate metabolism in skeletal muscle. Neuronal NOS is constitutively expressed at the muscle fiber sarcolemma linked to the dystrophin‐glycoprotein complex and concentrated at the neuromuscular endplate. There is increasing evidence that altered expression of neuronal NOS plays a role in muscle fiber damage in neuromuscular diseases such as dystrophinopathies and denervating disorders. Although there have been some previous conflicting results on the neuronal NOS expression pattern in denervated muscle fibers, it is now well established that denervation is associated with a down‐regulation and disappearance of sarcolemmal neuronal NOS at synaptic/extrasynaptic or both sites. As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down‐regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression. As NO serves as a retrograde messenger, it may trigger structural downstream events responsible for neuromuscular synaptogenesis and preventing polyneural innervation. Nevertheless, decreased NO production in denervation reduces the cytoprotective scavenger function of NO for superoxide anions promoting oxidative stress that is likely to be involved in muscle fiber damage and death. However, the multifaced role of NOS and NO under physiological and pathological conditions remains poorly understood on the basis of the current knowledge. Microsc. Res. Tech. 55:181–186, 2001. © 2001 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 1059-910X , 1097-0029
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2001
    detail.hit.zdb_id: 1474912-9
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages