Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Gene Medicine, Wiley, Vol. 6, No. 6 ( 2004-06), p. 663-672
    Abstract: Familial hypercholesterolemia is an inherited disease caused by mutations in the LDL receptor gene leading to severe hypercholesterolemia and atherosclerosis. The LDL receptor is predominantly expressed in the liver, making it a preferred target organ for somatic gene therapy. We recently isolated a new family of vectors based on adeno‐associated viruses (AAVs) isolated from nonhuman primates, which enable efficient and stable transgene expression following in vivo gene delivery to liver. Methods Traditional vectors based on AAV serotype 2 and two novel AAVs from nonhuman primates, serotypes AAV7 and AAV8, were produced encoding for the human LDL receptor. Vectors were injected into the portal veins of LDL receptor deficient mice that were fed a high‐fat diet to achieve severe pretreatment hypercholesterolemia. Results Animals receiving the novel AAV vectors realized nearly complete normalization of serum lipids and failed to develop the severe atherosclerosis that characterized the untreated animals; the AAV2 vector constructs demonstrated partial lipid correction and only a modest improvement in atherosclerosis. Conclusions Using vectors based on novel nonhuman primate AAVs, which provide advantages in terms of efficiency, we were able to achieve a long‐term correction of the metabolic defect in LDL receptor deficient mice. Copyright © 2004 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 1099-498X , 1521-2254
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2004
    detail.hit.zdb_id: 2002203-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages