Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Magnetic Resonance Imaging, Wiley, Vol. 50, No. 3 ( 2019-09), p. 816-823
    Abstract: The paraspinal muscles play an important role in the onset and progression of lower back pain. It would be of clinical interest to identify imaging biomarkers of the paraspinal musculature that are related to muscle function and strength. Diffusion tensor imaging (DTI) enables the microstructural examination of muscle tissue and its pathological changes. Purpose To investigate associations of DTI parameters of the lumbar paraspinal muscles with isometric strength measurements in healthy volunteers. Study Type Prospective. Subjects Twenty‐one healthy subjects (12 male, 9 female; age = 30.1 ± 5.6 years; body mass index [BMI] = 27.5 ± 2.6 kg/m 2 ) were recruited. Field Strength/Sequence 3 T/single‐shot echo planar imaging (ss‐EPI) DTI in 24 directions; six‐echo 3D spoiled gradient echo sequence for chemical shift encoding‐based water–fat separation. Assessment Paraspinal muscles at the lumbar spine were examined. Erector spinae muscles were segmented bilaterally; cross‐sectional area (CSA), proton density fat fraction (PDFF), and DTI parameters were calculated. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer and the ratio of extension to flexion strength (E/F) calculated. Statistical Tests Pearson correlation coefficients; multivariate regression models. Results Significant positive correlations were found between the ratio of extension to flexion (E/F) strength and mean diffusivity (MD) ( P  = 0.019), RD ( P  = 0.02) and the eigenvalues (λ1: P  = 0.026, λ2: P  = 0.033, λ3: P  = 0.014). In multivariate regression models λ3 of the erector spinae muscle λ3 and gender remained statistically significant predictors of E/F (R 2 adj  = 0.42, P  = 0.003). Data Conclusion DTI allowed the identification of muscle microstructure differences related to back muscle function that were not reflected by CSA and PDFF. DTI may potentially track subtle changes of back muscle tissue composition. Level of Evidence : 3 Technical Efficacy : Stage 2 J. Magn. Reson. Imaging 2019;50:816–823.
    Type of Medium: Online Resource
    ISSN: 1053-1807 , 1522-2586
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1497154-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages