Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Wiley ; 2023
    In:  International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
    In: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Wiley
    Kurzfassung: Automatic design of microwave filter based on artificial intelligence is recognized as an alternative to conventional approach, due to the complexity of the structure parameters and the need of enormous solution space. In this paper, an unsupervised, end‐to‐end training framework, which is named Relational Induction Neural Network (RINN) is proposed. RINN discretizes the model, and makes cluster analysis on each action of geometrical parameters. Deep reinforcement learning (DRL) neural network is applied to design the filter according to reward function. Several second‐order filters with different performance and one sixth‐order filter are designed with RINN. The results show that RINN can automatically induce the relationship between microwave device structures without any prior knowledge through training or learning. This research crosses the gap between DRL and microwave filter, and can also be extended to other microwave device, antenna and other related fields.
    Materialart: Online-Ressource
    ISSN: 0894-3370 , 1099-1204
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2023
    ZDB Id: 2030930-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz