Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neuroscience Research, Wiley, Vol. 83, No. 8 ( 2006-06), p. 1502-1514
    Abstract: Human adult bone marrow‐derived mesodermal stromal cells (hMSCs) are able to differentiate into multiple mesodermal tissues, including bone and cartilage. There is evidence that these cells are able to break germ layer commitment and differentiate into cells expressing neuroectodermal properties. There is still debate about whether this results from cell fusion, aberrant marker gene expression or real neuroectodermal differentiation. Here we extend our work on neuroectodermal conversion of adult hMSCs in vitro by evaluating various epigenetic conversion protocols using quantitative RT‐PCR and immunocytochemistry. Undifferentiated hMSCs expressed high levels of fibronectin as well as several neuroectodermal genes commonly used to characterize neural cell types, such as nestin, β‐tubulin III, and GFAP, suggesting that hMSCs retain the ability to differentiate into neuroectodermal cell types. Protocols using a direct differentiation of hMSCs into a neural phenotype failed to induce significant changes in morphology and/or expression of markers of early and mature glial/neuronal cells types. In contrast, a multistep protocol with conversion of hMSCs into a neural stem cell‐like population and subsequent terminal differentiation in mature glia and neurons generated relevant morphological changes as well as significant increase of expression levels of marker genes for early and late neural cell types, such as nestin, neurogenin2, MBP, and MAP2ab, accompanied by a loss of their mesenchymal properties. Our data provide an impetus for differentiating hMSCs in vitro into mature neuroectodermal cells. Neuroectodermally converted hMSCs may therefore ultimately help in treating acute and chronic neurodegenerative diseases. Analysis of marker gene expression for characterization of neural cells derived from MSCs has to take into account that several early and late neuroectodermal genes are already expressed in undifferentiated MSCs. © 2006 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0360-4012 , 1097-4547
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2006
    detail.hit.zdb_id: 1474904-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages