In:
Macromolecular Rapid Communications, Wiley, Vol. 36, No. 11 ( 2015-06), p. 1129-1137
Kurzfassung:
Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO 3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well‐defined organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO 2 nanoparticles and a 3‐hydroxy‐tyramine (DOPA) substituted polymer (DOPA‐polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO 2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA‐polymer to the TiO 2 nanoparticles. image
Materialart:
Online-Ressource
ISSN:
1022-1336
,
1521-3927
DOI:
10.1002/marc.201400706
Sprache:
Englisch
Verlag:
Wiley
Publikationsdatum:
2015
ZDB Id:
1475027-2