In:
Magnetic Resonance in Medicine, Wiley, Vol. 85, No. 1 ( 2021-01), p. 480-494
Abstract:
Quantitative Susceptibility Mapping (QSM) is usually performed by minimizing a functional with data fidelity and regularization terms. A weighting parameter controls the balance between these terms. There is a need for techniques to find the proper balance that avoids artifact propagation and loss of details. Finding the point of maximum curvature in the L‐curve is a popular choice, although it is slow, often unreliable when using variational penalties, and has a tendency to yield overregularized results. Methods We propose 2 alternative approaches to control the balance between the data fidelity and regularization terms: 1) searching for an inflection point in the log‐log domain of the L‐curve, and 2) comparing frequency components of QSM reconstructions. We compare these methods against the conventional L‐curve and U‐curve approaches. Results Our methods achieve predicted parameters that are better correlated with RMS error, high‐frequency error norm, and structural similarity metric‐based parameter optimizations than those obtained with traditional methods. The inflection point yields less overregularization and lower errors than traditional alternatives. The frequency analysis yields more visually appealing results, although with larger RMS error. Conclusion Our methods provide a robust parameter optimization framework for variational penalties in QSM reconstruction. The L‐curve–based zero‐curvature search produced almost optimal results for typical QSM acquisition settings. The frequency analysis method may use a 1.5 to 2.0 correction factor to apply it as a stand‐alone method for a wider range of signal‐to‐noise‐ratio settings. This approach may also benefit from fast search algorithms such as the binary search to speed up the process.
Type of Medium:
Online Resource
ISSN:
0740-3194
,
1522-2594
Language:
English
Publisher:
Wiley
Publication Date:
2021
detail.hit.zdb_id:
1493786-4