Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2017
    In:  Journal of Polymer Science Part B: Polymer Physics Vol. 55, No. 12 ( 2017-06-15), p. 928-939
    In: Journal of Polymer Science Part B: Polymer Physics, Wiley, Vol. 55, No. 12 ( 2017-06-15), p. 928-939
    Abstract: Microstructured surfaces have great potentials to improve the performances and efficiency of optoelectronic devices. In this work, a simple robust approach based on surface instabilities was presented to fabricate poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) films with ridge‐like/wrinkled composite microstructures. Namely, the hierarchically patterned films were prepared by spin coating the P3HT/tetrahydrofuran (THF) solution on a polydimethylsiloxane (PDMS) substrate to form stable ridge‐like structures, followed by solvent vapor swelling to create surface wrinkles with the orientation guided by the ridge‐like structures. During spin coating of the P3HT/THF solution, the ridge‐like structures were generated by the in‐situ template of the THF swelling‐induced creasing structures on the PDMS substrate. To our knowledge, it is the first report that the creasing structures are used as a recoverable template for patterning films. The crease‐templated ridge‐like structures were well modulated by the THF swelling time, the modulus of the PDMS substrate, the P3HT/THF solution concentration and the selective/blanket exposure of the PDMS substrate to O 2 plasma. UV–vis and fluorescence spectrometry measurements indicated that the light absorption and fluorescent emission were improved on the hierarchically patterned P3HT films, which can be utilized to enhance the efficiencies of organic solar cells. Furthermore, this simple versatile method based on the solvent swelling‐induced crease as the in‐situ recoverable template has been extended to pattern other spin‐coated films with different compositions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 928–939
    Type of Medium: Online Resource
    ISSN: 0887-6266 , 1099-0488
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1473448-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages