Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Quantum Chemistry, Wiley, Vol. 121, No. 13 ( 2021-07-05)
    Abstract: The carbonyl fluoride (CF 2 O) is one of the significant atmospheric molecules, and its hydrolysis reaction has been considered the most potential removal process in the earth's troposphere. In this article, the hydrolysis reaction of CF 2 O assisted by H 2 O, basic (NH 3 and CH 3 NHCH 3 ), and acidic (H 2 SO 4 , HCOOH, and CF 3 COOH) catalysts have theoretically investigated using quantum chemical methods. These catalysts significantly decrease the hydrolysis reaction of barrier height by 20.4–28.8 kcal mol −1 . Here two H‐transfer mechanisms have been identified in these catalyzed hydrolytic reactions as asynchronous collaborative caused by base molecules and the synchronous collaborative led by H 2 O and acid molecules. In addition, the rate coefficient and relative rate of all catalytic reactions have calculated using conventional transition state theory (TST) over a temperature range of 280–320 K. The results show that H 2 SO 4 has the best catalytic effect without considering the concentration of catalyst molecules in the atmosphere. On the contrary, a high concentration of HCOOH (10 ppbv) is dominant in the catalytic reaction when considered the concentrations of catalyst molecules. In this work, it was identified that the catalytic efficiencies of H 2 O, acid and base molecules upon addition reaction between CF 2 O and H 2 O is not only related to their catalytic mechanisms but also depending upon their concentrations in the atmosphere.
    Type of Medium: Online Resource
    ISSN: 0020-7608 , 1097-461X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1475014-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages