Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  International Journal of Robust and Nonlinear Control Vol. 29, No. 13 ( 2019-09-10), p. 4609-4626
    In: International Journal of Robust and Nonlinear Control, Wiley, Vol. 29, No. 13 ( 2019-09-10), p. 4609-4626
    Abstract: This paper aims to solve the H ∞ stabilization problem for networked semi‐Markovian jump systems subject to randomly occurring uncertainties by an improved event‐triggered technique. A new measurement error that is defined as the difference value between the latest transmitted data and the mean value of both current data and latest transmitted data is introduced into the event‐triggered condition. Compared with traditional dynamic event‐triggered scheme, more unexpected data could be avoided to be transmitted, which is demonstrated in the simulation through sufficient comparison experiments. Furthermore, by employing a Lyapunov‐Krasovskii functional method and a free‐weighting matrix method, sufficient conditions are derived to guarantee the stabilization of the closed‐loop semi‐Markovian jump time‐delay system with uncertainties and a prescribed performance index. Then, a codesign method for H ∞ controller gains and event‐triggered parameters is presented. Finally, simulations are given to verify the effectiveness of our improved dynamic event‐triggered scheme.
    Type of Medium: Online Resource
    ISSN: 1049-8923 , 1099-1239
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2019094-3
    SSG: 17,1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages