Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Small Vol. 19, No. 34 ( 2023-08)
    In: Small, Wiley, Vol. 19, No. 34 ( 2023-08)
    Abstract: K metal battery is a kind of high‐energy‐density storage device with economic advantages. However, due to the dendrite growth and difficult processing characteristics, it is difficult to prepare stable K metal anode with thin thickness and fixed area capacity, which severely limits its development. In this work, a multi‐functional 3D skeleton (rGCA) is synthesized by simple vacuum filtration and thermal reduction, and K metal anodes with controllable thickness and area capacity (K content) can be fabricated by changing the raw material mass and graphene layer spacing of rGCA. Moreover, the graphene sheet layer of rGCA can relax stress and relieve volume expansion; carbon nanotubes can serve as the fast transport channel of electrons, reducing internal impedance and local current density; Ag nanoparticles can induce the uniform nucleation and deposition of K + . The K metal composite anodes (rGCA‐K) based on the conductive skeleton can effectively suppress dendrites and exhibit excellent electrochemical performance in symmetric and full cells. The controllable fabrication process of stable K metal anode is expected to help K metal batteries move toward the stage of commercial production.
    Type of Medium: Online Resource
    ISSN: 1613-6810 , 1613-6829
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2168935-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages