Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Stat Vol. 12, No. 1 ( 2023-12)
    In: Stat, Wiley, Vol. 12, No. 1 ( 2023-12)
    Abstract: The multilayer stochastic block model is one of the fundamental models in multilayer networks and is often used to represent multiple types of relations between different individuals. In this paper, we extend the profile‐pseudo likelihood method for the single‐layer stochastic block model to the case of the multilayer stochastic block model. Specifically, by assuming all network layers have identical community membership labels, we investigate the multilayer stochastic block model with a common community structure. In this paper, we develop a profile‐pseudo likelihood algorithm to fit a multilayer stochastic block model and estimate the community label. Meantime, we prove that the algorithm has convergence guarantee and that the estimated community label is strongly consistent. Further, for estimating the number of communities , we extend the corrected Bayesian information criterion to multilayer stochastic block models. We also extend this algorithm to fit the multilayer degree‐corrected stochastic block model. Both simulation studies and real‐world data examples indicate that the proposed method works well.
    Type of Medium: Online Resource
    ISSN: 2049-1573 , 2049-1573
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2687133-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages