Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Journal of High Energy Physics Vol. 2019, No. 7 ( 2019-07)
    In: Journal of High Energy Physics, Springer Science and Business Media LLC, Vol. 2019, No. 7 ( 2019-07)
    Abstract: We investigate the QCD phase diagram for nonzero background magnetic fields using first-principles lattice simulations. At the physical point (in terms of quark masses), the thermodynamics of this system is controlled by two opposing effects: magnetic catalysis (enhancement of the quark condensate) at low temperature and inverse magnetic catalysis (reduction of the condensate) in the transition region. While the former is known to be robust and independent of the details of the interactions, inverse catalysis arises as a result of a delicate competition, effective only for light quarks. By performing simulations at different quark masses, we determine the pion mass above which inverse catalysis does not take place in the transition region anymore. Even for pions heavier than this limiting value — where the quark condensate undergoes magnetic catalysis — our results are consistent with the notion that the transition temperature is reduced by the magnetic field. These findings will be useful to guide low-energy models and effective theories of QCD.
    Type of Medium: Online Resource
    ISSN: 1029-8479
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2027350-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages