In:
Journal of High Energy Physics, Springer Science and Business Media LLC, Vol. 2022, No. 8 ( 2022-08-05)
Abstract:
This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons ( W , Z/γ ∗ ) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production.
Type of Medium:
Online Resource
ISSN:
1029-8479
DOI:
10.1007/JHEP08(2022)089
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2022
detail.hit.zdb_id:
2027350-2