Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of High Energy Physics Vol. 2023, No. 8 ( 2023-08-21)
    In: Journal of High Energy Physics, Springer Science and Business Media LLC, Vol. 2023, No. 8 ( 2023-08-21)
    Abstract: We propose a tantalizing possibility that misinterpretation of the reconstructed missing momentum may have yielded the observed discrepancies among measurements of the W -mass in different collider experiments. We introduce a proof-of-principle scenario characterized by a new physics particle, which can be produced associated with the W -boson in hadron collisions and contributes to the net missing momentum observed in a detector. We show that these exotic events pass the selection criteria imposed by various collaborations at reasonably high rates. Consequently, in the presence of even a handful of these events, a fit based on the ansatz that the missing momentum is primarily due to neutrinos (as it happens in the Standard Model), yields a W -boson mass that differs from its true value. Moreover, the best fit mass depends on the nature of the collider and the center-of-mass energy of collisions. We construct a barebones model that demonstrates this possibility quantitatively while satisfying current constraints. Interestingly, we find that the nature of the new physics particle and its interactions appear as a variation of the physics of Axion-like particles after a field redefinition.
    Type of Medium: Online Resource
    ISSN: 1029-8479
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2027350-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages