Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  The International Journal of Advanced Manufacturing Technology Vol. 121, No. 3-4 ( 2022-07), p. 1689-1695
    In: The International Journal of Advanced Manufacturing Technology, Springer Science and Business Media LLC, Vol. 121, No. 3-4 ( 2022-07), p. 1689-1695
    Abstract: For single-lip drills with small diameters, the cutting fluid is supplied through a kidney-shaped cooling channel inside the tool. In addition to reducing friction, the cutting fluid is also important for the dissipation of heat at the cutting edge and for the chip removal. However, in previous investigations of single-lip drills, it was observed that the fluid remains on the back side of the cutting edge, and accordingly, the cutting edge is insufficiently cooled. In this paper, a simulation-based investigation of an introduced additional drainage flute and flank surface modifications is carried out using smoothed particle hydrodynamics as well as computational fluid dynamics. It is determined that the additionally introduced drainages lead to a slightly changed flow situation, but a significant flow behind the cutting edge and into the drainage flute cannot be achieved due to reasons explained in this paper. Accordingly, not even a much larger drainage flute with unwanted side-effect of a decrease tool strength is able to archive a significant improvement of the flow around the cutting edge. Therefore, major changes to the cooling channel, like the use of two separate channels, the modification of their positions, or modified flank surfaces, are necessary in order to achieve an improvement in lubrication of the cutting edge and heat dissipation.
    Type of Medium: Online Resource
    ISSN: 0268-3768 , 1433-3015
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 52651-4
    detail.hit.zdb_id: 1476510-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages