In:
Journal of Mathematical Biology, Springer Science and Business Media LLC, Vol. 81, No. 1 ( 2020-07), p. 185-207
Abstract:
We study an extension of the standard framework for pedigree analysis, in which we allow pedigree founders to be inbred. This solves a number of practical challenges in calculating coefficients of relatedness, including condensed identity coefficients. As a consequence we expand considerably the class of pedigrees for which such coefficients may be efficiently computed. An application of this is the modelling of background inbreeding as a continuous effect. We also use inbred founders to shed new light on constructibility of relatedness coefficients, i.e., the problem of finding a genealogy yielding a given set of coefficients. In particular, we show that any theoretically admissible coefficients for a pair of noninbred individuals can be produced by a finite pedigree with inbred founders. Coupled with our computational methods, implemented in the R package , this allows for the first time computer analysis of general constructibility solutions, thus making them accessible for practical use.
Type of Medium:
Online Resource
ISSN:
0303-6812
,
1432-1416
DOI:
10.1007/s00285-020-01505-x
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2020
detail.hit.zdb_id:
1421292-4
SSG:
12