Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Climate Dynamics Vol. 58, No. 5-6 ( 2022-03), p. 1477-1493
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 58, No. 5-6 ( 2022-03), p. 1477-1493
    Abstract: Strong historical and predicted future warming over high-latitudes prompt significant effects on agricultural and forest ecosystems. Thus, there is an urgent need for spatially-detailed information of current thermal growing season (GS) conditions and their past changes. Here, we deployed a large network of weather stations, high-resolution geospatial environmental data and semi-parametric regression to model the spatial variation in multiple GS variables (i.e. beginning, end, length, degree day sum [GDDS, base temperature + 5 °C]) and their intra-annual variability and temporal trends in respect to geographical location, topography, water and forest cover, and urban land use variables over northern Europe. Our analyses revealed substantial spatial variability in average GS conditions (1990–2019) and consistent temporal trends (1950–2019). We showed that there have been significant changes in thermal GS towards earlier beginnings (on average 15 days over the study period), increased length (23 days) and GDDS (287 °C days). By using a spatial interpolation of weather station data to a regular grid we predicted current GS conditions at high resolution (100 m × 100 m) and with high accuracy (correlation ≥ 0.92 between observed and predicted mean GS values), whereas spatial variation in temporal trends and interannual variability were more demanding to predict. The spatial variation in GS variables was mostly driven by latitudinal and elevational gradients, albeit they were constrained by local scale variables. The proximity of sea and lakes, and high forest cover suppressed temporal trends and inter-annual variability potentially indicating local climate buffering. The produced high-resolution datasets showcased the diversity in thermal GS conditions and impacts of climate change over northern Europe. They are valuable in various forest management and ecosystem applications, and in adaptation to climate change.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages