Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: European Journal of Applied Physiology, Springer Science and Business Media LLC, Vol. 121, No. 7 ( 2021-07), p. 2015-2026
    Abstract: Spaceflight impairs physical capacity. Here we assessed the protective effect of artificial gravity (AG) on aerobic exercise capacity and muscle function during bed rest, a spaceflight analogue. Methods 24 participants (33 ± 9 years, 175 ± 9 cm, 74 ± 10 kg, 8 women) were randomly allocated to one of three groups: continuous AG (cAG), intermittent AG (iAG) or control (CTRL). All participants were subjected to 60 days of six-degree head-down tilt bed rest, and subjects of the intervention groups completed 30 min of centrifugation per day: cAG continuously and iAG for 6 × 5 min, with an acceleration of 1 g at the center of mass. Physical capacity was assessed before and after bed rest via maximal voluntary contractions, cycling spiroergometry, and countermovement jumps. Results AG had no significant effect on aerobic exercise capacity, flexor muscle function and isometric knee extension strength or rate of force development (RFD). However, AG mitigated the effects of bed rest on jumping power (group * time interaction of the rmANOVA p   〈  0.001; iAG − 25%, cAG − 26%, CTRL − 33%), plantar flexion strength (group * time p  = 0.003; iAG − 35%, cAG − 31%, CTRL − 48%) and plantar flexion RFD (group * time p  = 0.020; iAG − 28%, cAG − 12%, CTRL − 40%). Women showed more pronounced losses than men in jumping power ( p   〈  0.001) and knee extension strength ( p  = 0.010). Conclusion The AG protocols were not suitable to maintain aerobic exercise capacity, probably due to the very low cardiorespiratory demand of this intervention. However, they mitigated some losses in muscle function, potentially due to the low-intensity muscle contractions during centrifugation used to avoid presyncope.
    Type of Medium: Online Resource
    ISSN: 1439-6319 , 1439-6327
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1459054-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages