Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Oecologia Vol. 194, No. 3 ( 2020-11), p. 515-528
    In: Oecologia, Springer Science and Business Media LLC, Vol. 194, No. 3 ( 2020-11), p. 515-528
    Abstract: Above- and below-ground herbivory are key ecosystem processes that can be substantially altered by environmental changes. However, direct comparisons of the coupled variations of above- and below-ground herbivore communities along elevation gradients remain sparse. Here, we studied the variation in assemblages of two dominant groups of herbivores, namely, aboveground orthoptera and belowground nematodes, in grasslands along six elevation gradients in the Swiss Alps. By examining variations of community properties of herbivores and their food plants along montane clines, we sought to determine whether the structure and functional properties of these taxonomic groups change with elevation. We found that orthoptera decreased in both species richness and abundance with elevation. In contrast with aboveground herbivores, the taxonomic richness and the total abundance of nematode did not covary with elevation. We further found a stronger shift in above- than below-ground functional properties along elevation, where the mandibular strength of orthoptera matched a shift in leaf toughness. Nematodes showed a weaker pattern of declined sedentary behavior and increased mobility with elevation. In contrast to the direct exposal of aboveground organisms to the surface climate, conditions may be buffered belowground, which together with the influence of edaphic factors on the biodiversity of soil biota, may explain the differences between elevational patterns of above- and below-ground communities. Our study emphasizes the necessity to consider both the above- and below-ground compartments to understand the impact of current and future climatic variation on ecosystems, from a functional perspective of species interactions.
    Type of Medium: Online Resource
    ISSN: 0029-8549 , 1432-1939
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1462019-4
    detail.hit.zdb_id: 123369-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages