Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Optimization and Engineering Vol. 21, No. 3 ( 2020-09), p. 761-802
    In: Optimization and Engineering, Springer Science and Business Media LLC, Vol. 21, No. 3 ( 2020-09), p. 761-802
    Abstract: The physical and virtual connectivity of systems via flows of energy, material, information, etc., steadily increases. This paper deals with systems of sub-systems that are connected by networks of shared resources that have to be balanced. For the optimal operation of the overall system, the couplings between the sub-systems must be taken into account, and the overall optimum will usually deviate from the local optima of the sub-systems. However, for reasons, such as problem size, confidentiality, resilience to breakdowns, or generally when dealing with autonomous systems, monolithic optimization is often infeasible. In this contribution, iterative distributed optimization methods based on dual decomposition where the values of the objective functions of the different sub-systems do not have to be shared are investigated. We consider connected dynamic systems that share resources. This situation arises for continuous processes in transient conditions between different steady states and in inherently discontinuous processes, such as batch production processes. This problem is challenging since small changes during the iterations towards the satisfaction of the overarching constraints can lead to significant changes in the arc structures of the optimal solutions for the sub-systems. Moreover, meeting endpoint constraints at free final times complicates the problem. We propose a solution strategy for coupled semi-batch processes and compare different numerical approaches, the sub-gradient method, ADMM, and ALADIN, and show that convexification of the sub-systems around feasible points increases the speed of convergence while using second-order information does not necessarily do so. Since sharing of resources has an influence on whether trajectory dependent terminal constraints can be satisfied, we propose a heuristic for the computation of free final times of the sub-systems that allows the dynamic sub-processes to meet the constraints. For the example of several semi-batch reactors which are coupled via a bound on the total feed flow rate, we demonstrate that the distributed methods converge to (local) optima and highlight the strengths and the weaknesses of the different distributed optimization methods.
    Type of Medium: Online Resource
    ISSN: 1389-4420 , 1573-2924
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2018576-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages