Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2022
    In:  Precision Agriculture Vol. 23, No. 6 ( 2022-12), p. 2229-2252
    In: Precision Agriculture, Springer Science and Business Media LLC, Vol. 23, No. 6 ( 2022-12), p. 2229-2252
    Kurzfassung: Canopy nitrogen content (CNC, kg/ha) provides crucial information for site-specific crop fertilization and the usability of Sentinel-2 (S2) satellite data for CNC monitoring at high fertilization levels in managed agricultural fields is still underexplored. Winter wheat samples were collected in France and Belgium in 2017 (n = 126) and 2018 (n = 18), analysed for CNC and S2-spectra were extracted at the sample locations. A comparison of three established remote sensing methods to retrieve CNC was carried out: (1) look-up-table (LUT) inversion of the canopy reflectance model PROSAIL, (2) Partial Least Square Regression (PLSR) and (3) nitrogen-sensitive vegetation indices (VI). The spatial and temporal model transferability to new data was rigorously assessed. The PROSAIL-LUT approach predicted CNC with a root mean squared error of 33.9 kg/ha on the 2017 dataset and a slightly larger value of 36.8 kg/ha on the 2018 dataset. Contrary, PLSR showed an error of 27.9 kg N/ha (R2 = 0.52) in the calibration dataset (2017) but a substantially larger error of 38.4 kg N/ha on the independent dataset (2018). VIs revealed calibration errors were slightly larger than the PLSR results but showed much higher validation errors for the independent dataset ( 〉  50 kg/ha). The PROSAIL inversion was more stable and robust than the PLSR and VI methods when applied to new data. The obtained CNC maps may support farmers in adapting their fertilization management according to the actual crop nitrogen status.
    Materialart: Online-Ressource
    ISSN: 1385-2256 , 1573-1618
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2022
    ZDB Id: 2016333-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz