Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Transport in Porous Media Vol. 146, No. 1-2 ( 2023-01), p. 5-53
    In: Transport in Porous Media, Springer Science and Business Media LLC, Vol. 146, No. 1-2 ( 2023-01), p. 5-53
    Abstract: This review provides an overview of concepts and approaches for the quantification of passive, non-reactive solute mixing in steady uniform porous media flows across scales. Mixing in porous media is the result of the interaction of spatial velocity fluctuations and diffusion or local-scale dispersion, which may lead to the homogenization of an initially segregated system. Velocity fluctuations are induced by spatial medium heterogeneities at the pore, Darcy or regional scales. Thus, mixing in porous media is a multiscale process, which depends on the medium structure and flow conditions. In the first part of the review, we discuss the interrelated processes of stirring, dispersion and mixing, and review approaches to quantify them that apply across scales. This implies concepts of hydrodynamic dispersion, approaches to quantify mixing state and mixing dynamics in terms of concentration statistics, and approaches to quantify the mechanisms of mixing. We review the characterization of stirring in terms of fluid deformation and folding and its relation with hydrodynamic dispersion. The integration of these dynamics to quantify the mechanisms of mixing is discussed in terms of lamellar mixing models. In the second part of this review, we discuss these concepts and approaches for the characterization of mixing in Poiseuille flow, and in porous media flows at the pore, Darcy and regional scales. Due to the fundamental nature of the mechanisms and processes of mixing, the concepts and approaches discussed in this review underpin the quantitative analysis of mixing phenomena in porous media flow systems in general.
    Type of Medium: Online Resource
    ISSN: 0169-3913 , 1573-1634
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1473676-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages