In:
International Journal of Computer Assisted Radiology and Surgery, Springer Science and Business Media LLC
Kurzfassung:
Computed tomography (CT) is widely used to identify anomalies in brain tissues because their localization is important for diagnosis and therapy planning. Due to the insufficient soft tissue contrast of CT, the division of the brain into anatomical meaningful regions is challenging and is commonly done with magnetic resonance imaging (MRI). Methods We propose a multi-atlas registration approach to propagate anatomical information from a standard MRI brain atlas to CT scans. This translation will enable a detailed automated reporting of brain CT exams. We utilize masks of the lateral ventricles and the brain volume of CT images as adjuvant input to guide the registration process. Besides using manual annotations to test the registration in a first step, we then verify that convolutional neural networks (CNNs) are a reliable solution for automatically segmenting structures to enhance the registration process. Results The registration method obtains mean Dice values of 0.92 and 0.99 in brain ventricles and parenchyma on 22 healthy test cases when using manually segmented structures as guidance. When guiding with automatically segmented structures, the mean Dice values are 0.87 and 0.98, respectively. Conclusion Our registration approach is a fully automated solution to register MRI atlas images to CT scans and thus obtain detailed anatomical information. The proposed CNN segmentation method can be used to obtain masks of ventricles and brain volume which guide the registration.
Materialart:
Online-Ressource
ISSN:
1861-6429
DOI:
10.1007/s11548-022-02786-x
Sprache:
Englisch
Verlag:
Springer Science and Business Media LLC
Publikationsdatum:
2022
ZDB Id:
2235881-X