Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Neuroinformatics Vol. 21, No. 3 ( 2023-07), p. 575-587
    In: Neuroinformatics, Springer Science and Business Media LLC, Vol. 21, No. 3 ( 2023-07), p. 575-587
    Abstract: Head CT, which includes the facial region, can visualize faces using 3D reconstruction, raising concern that individuals may be identified. We developed a new de-identification technique that distorts the faces of head CT images. Head CT images that were distorted were labeled as "original images" and the others as "reference images." Reconstructed face models of both were created, with 400 control points on the facial surfaces. All voxel positions in the original image were moved and deformed according to the deformation vectors required to move to corresponding control points on the reference image. Three face detection and identification programs were used to determine face detection rates and match confidence scores. Intracranial volume equivalence tests were performed before and after deformation, and correlation coefficients between intracranial pixel value histograms were calculated. Output accuracy of the deep learning model for intracranial segmentation was determined using Dice Similarity Coefficient before and after deformation. The face detection rate was 100%, and match confidence scores were 〈 90. Equivalence testing of the intracranial volume revealed statistical equivalence before and after deformation. The median correlation coefficient between intracranial pixel value histograms before and after deformation was 0.9965, indicating high similarity. Dice Similarity Coefficient values of original and deformed images were statistically equivalent. We developed a technique to de-identify head CT images while maintaining the accuracy of deep-learning models. The technique involves deforming images to prevent face identification, with minimal changes to the original information.
    Type of Medium: Online Resource
    ISSN: 1539-2791 , 1559-0089
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2099780-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages