Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2020
    In:  Microgravity Science and Technology Vol. 32, No. 5 ( 2020-10), p. 897-906
    In: Microgravity Science and Technology, Springer Science and Business Media LLC, Vol. 32, No. 5 ( 2020-10), p. 897-906
    Kurzfassung: Dilute ensembles of granular matter (so-called granular gases) are nonlinear systems which exhibit fascinating dynamical behavior far from equilibrium, including non-Gaussian distributions of velocities and rotational velocities, clustering, and violation of energy equipartition. In order to understand their dynamic properties, microgravity experiments were performed in suborbital flights and drop tower experiments. Up to now, the experimental images were evaluated mostly manually. Here, we introduce an approach for automatic 3D tracking of positions and orientations of rod-like particles in a dilute ensemble, based on two-view video data analysis. A two-dimensional (2D) localization of particles is performed using a Mask R-CNN neural network trained on a custom data set. The problem of 3D matching of the particles is solved by minimization of the total reprojection error, and finally, particle trajectories are tracked so that ensemble statistics are extracted. Depending on the required accuracy, the software can work fully self-sustainingly or serve as a base for subsequent manual corrections. The approach can be extended to other 3D and 2D particle tracking problems.
    Materialart: Online-Ressource
    ISSN: 0938-0108 , 1875-0494
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 2403671-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz