Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2010
    In:  Parasitology Vol. 137, No. 9 ( 2010-08), p. 1333-1341
    In: Parasitology, Cambridge University Press (CUP), Vol. 137, No. 9 ( 2010-08), p. 1333-1341
    Abstract: African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically distinct life-cycle stages. The genome has been sequenced, and microarrays, RNA-interference and high-accuracy metabolomics are available. Furthermore, the availability of extensive kinetic data on all glycolytic enzymes has led to the early development of a complete, experiment-based dynamic model of an important biochemical pathway. Here we describe the achievements of trypanosome systems biology so far and outline the necessary steps towards the ambitious aim of creating a ‘Silicon Trypanosome’, a comprehensive, experiment-based, multi-scale mathematical model of trypanosome physiology. We expect that, in the long run, the quantitative modelling enabled by the Silicon Trypanosome will play a key role in selecting the most suitable targets for developing new anti-parasite drugs.
    Type of Medium: Online Resource
    ISSN: 0031-1820 , 1469-8161
    RVK:
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2010
    detail.hit.zdb_id: 1491287-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages