Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge University Press (CUP) ; 2012
    In:  International Journal of Technology Assessment in Health Care Vol. 28, No. 1 ( 2012-01), p. 36-43
    In: International Journal of Technology Assessment in Health Care, Cambridge University Press (CUP), Vol. 28, No. 1 ( 2012-01), p. 36-43
    Kurzfassung: Objectives: The aim of this study was to synthesize best practices for addressing clinical heterogeneity in systematic reviews and health technology assessments (HTAs). Methods: We abstracted information from guidance documents and methods manuals made available by international organizations that develop systematic reviews and HTAs. We searched PubMed® to identify studies on clinical heterogeneity and subgroup analysis. Two authors independently abstracted and assessed relevant information. Results: Methods manuals offer various definitions of clinical heterogeneity. In essence, clinical heterogeneity is considered variability in study population characteristics, interventions, and outcomes across studies. It can lead to effect-measure modification or statistical heterogeneity, which is defined as variability in estimated treatment effects beyond what would be expected by random error alone. Clinical and statistical heterogeneity are closely intertwined but they do not have a one-to-one relationship. The presence of statistical heterogeneity does not necessarily indicate that clinical heterogeneity is the causal factor. Methodological heterogeneity, biases, and random error can also cause statistical heterogeneity, alone or in combination with clinical heterogeneity. Conclusions: Identifying potential modifiers of treatment effects (i.e., effect-measure modifiers) is important for researchers conducting systematic reviews and HTAs. Recognizing clinical heterogeneity and clarifying its implications helps decision makers to identify patients and patient populations who benefit the most, who benefit the least, and who are at greatest risk of experiencing adverse outcomes from a particular intervention.
    Materialart: Online-Ressource
    ISSN: 0266-4623 , 1471-6348
    Sprache: Englisch
    Verlag: Cambridge University Press (CUP)
    Publikationsdatum: 2012
    ZDB Id: 2020486-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz