Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge University Press (CUP) ; 2021
    In:  Artificial Intelligence for Engineering Design, Analysis and Manufacturing Vol. 35, No. 3 ( 2021-08), p. 284-294
    In: Artificial Intelligence for Engineering Design, Analysis and Manufacturing, Cambridge University Press (CUP), Vol. 35, No. 3 ( 2021-08), p. 284-294
    Kurzfassung: Prolonged sitting in a fixed or constrained position exposes aircraft passengers to long-term static loading of their bodies, which has deleterious effects on passengers’ comfort throughout the duration of the flight. The previous studies focused primarily on office and driving sitting postures and few studies, however, focused on the sitting postures of passengers in aircraft. Consequently, the aim of the present study is to detect and recognize the sitting postures of aircraft passengers in relation to sitting discomfort. A total of 24 subjects were recruited for the experiment, which lasted for 2 h. Furthermore, a total of 489 sitting postures were extracted and the pressure data between subjects and seat was collected from the experiment. After the detection of sitting postures, eight types of sitting postures were classified based on key parts (trunk, back, and legs) of the human bodies. Thereafter, the eight types of sitting postures were recognized with the aid of pressure data of seat pan and backrest employing several machine learning methods. The best classification rate of 89.26% was obtained from the support vector machine (SVM) with radial basis function (RBF) kernel. The detection and recognition of the eight types of sitting postures of aircraft passengers in this study provided an insight into aircraft passengers’ discomfort and seat design.
    Materialart: Online-Ressource
    ISSN: 0890-0604 , 1469-1760
    Sprache: Englisch
    Verlag: Cambridge University Press (CUP)
    Publikationsdatum: 2021
    ZDB Id: 2025375-8
    SSG: 9,11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz