Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2018
    In:  Proceedings of the International Astronomical Union Vol. 14, No. S342 ( 2018-05), p. 101-107
    In: Proceedings of the International Astronomical Union, Cambridge University Press (CUP), Vol. 14, No. S342 ( 2018-05), p. 101-107
    Abstract: This paper summarizes our recent works of studying AGN feedback in an isolated elliptical galaxy by performing high-resolution hydrodynamical numerical simulations. Bondi radius is resolved and the mass accretion rate of the black hole is calculated. The most updated AGN physics, namely the discrimination of cold and hot accretion modes and the exact descriptions of the AGN radiation and wind for a given accretion rate are adopted and their interaction with the gas in the host galaxy is calculated. Physical processes such as star formation and SNe feedback are taken into account. Consistent with observation, we find the AGN spends most of the time in the low-luminosity regime. AGN feedback overall suppresses the star formation; but depending on location in the galaxy and time, it can also enhance it. The light curve of specific star formation rate is not synchronous with the AGN light curve. These results put a serious challenge to the observational test of the relation between AGN activity and star formation. We find that wind usually plays a dominant role in controlling the AGN luminosity and star formation, but radiation also cannot be neglected.
    Type of Medium: Online Resource
    ISSN: 1743-9213 , 1743-9221
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2170724-8
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages