Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Wearable Technologies, Cambridge University Press (CUP), Vol. 3 ( 2022)
    Abstract: Climbing stairs can become a daily obstacle for elderly people, and an exoskeleton can assist here. However, the exoskeletons that are designed to assist stair climbing are actuated in different ways. To find a minimal actuation configuration, we identify the assist phases by evaluating the power deficit of 11 healthy but weak elderly people (72.4 ± 2.1 years; 69–76 years; 1.67 ± 0.10 m; 74.88 ± 14.54 kg) compared to 13 younger people (24.0 ± 1.8 years; 22–28 years; 1.74 ± 0.10 m; 70.85 ± 11.91 kg) in a biomechanical study and discuss moment characteristics. Three-dimensional kinematics and ground reaction forces were collected, and kinematics, kinetics, and power characteristics of each subject for ascent and descent were calculated using inverse dynamics. Significant differences for power between both groups were assessed with statistical parametric mapping method using dynamic time warping. During ascent, the largest significant power deficit of the elderly subjects occurs in the single stance phase (SSP) during pull-up in the knee joint. During descent, significant mean power deficits of 0.2 and 0.8 W/kg for the highest deficit occur in the ankle joint in the beginning of the SSP and also in the knee joint in the same phase. Therefore, an exoskeleton should address the power deficit for knee extension (ascent: 1.0 ± 0.9 W/kg; descent: 0.3 ± 0.2 W/kg) and could assist the ankle during ascent and descent by an additional plantar flexion moment of 0.2 Nm/kg each.
    Type of Medium: Online Resource
    ISSN: 2631-7176
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3037796-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages