Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-06-22)
    Abstract: Recombination plays a dominant role in the evolution of the bacterial pathogen Helicobacter pylori , but its dynamics remain incompletely understood. Here we use an in vitro transformation system combined with genome sequencing to study chromosomal integration patterns after natural transformation. A single transformation cycle results in up to 21 imports, and repeated transformations generate a maximum of 92 imports (8% sequence replacement). Import lengths show a bimodal distribution with averages of 28 and 1,645 bp. Reanalysis of paired H. pylori genomes from chronically infected people demonstrates the same bimodal import pattern in vivo . Restriction endonucleases (REases) of the recipient bacteria fail to inhibit integration of homeologous DNA, independently of methylation. In contrast, REases limit the import of heterologous DNA. We conclude that restriction-modification systems inhibit the genomic integration of novel sequences, while they pose no barrier to homeologous recombination, which reconciles the observed stability of the H. pylori gene content and its highly recombinational population structure.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages