In:
Cell Death & Disease, Springer Science and Business Media LLC, Vol. 11, No. 10 ( 2020-10-13)
Abstract:
The factor that binds to the inducer of short transcripts‐1 (FBI-1) is a transcription suppressor and an important proto‐oncogene that plays multiple roles in carcinogenesis and therapeutic resistance. In the present work, our results indicated that FBI-1 enhanced the resistance of triple-negative breast cancer (TNBC) cells to chemotherapeutic agents by repressing the expression of micoRNA-30c targeting the pregnane X receptor (PXR). The expression of FBI-1 was positively related to PXR and its downstream drug resistance-related genes in TNBC tissues. FBI-1 enhanced the expression of PXR and enhanced the activation of the PXR pathway. The miR-30c decreased the expression of PXR by targeting the 3′-UTR of PXR, and FBI-1 increased the expression of PXR by repressing miR-30c’s expression. Through the miR-30c/PXR axis, FBI-1 accelerated the clearance or elimination of antitumor agents in TNBC cells (the TNBC cell lines or the patients derived cells [PDCs]) and induced the resistance of cells to antitumo r agents. Therefore, the results indicated that the miR-30c/PXR axis participates in the FBI-1-mediated drug-resistance of TNBC cells.
Type of Medium:
Online Resource
ISSN:
2041-4889
DOI:
10.1038/s41419-020-03053-0
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2020
detail.hit.zdb_id:
2541626-1