Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Biomedical Engineering Vol. 7, No. 5 ( 2023-04-10), p. 672-691
    In: Nature Biomedical Engineering, Springer Science and Business Media LLC, Vol. 7, No. 5 ( 2023-04-10), p. 672-691
    Abstract: The precise regulation of the activity of Cas9 is crucial for safe and efficient editing. Here we show that the genome-editing activity of Cas9 can be constrained by the addition of cytosine stretches to the 5′-end of conventional single-guide RNAs (sgRNAs). Such a ‘safeguard sgRNA’ strategy, which is compatible with Cas12a and with systems for gene activation and interference via CRISPR (clustered regularly interspaced short palindromic repeats), leads to the length-dependent inhibition of the formation of functional Cas9 complexes. Short cytosine extensions reduced p53 activation and cytotoxicity in human pluripotent stem cells, and enhanced homology-directed repair while maintaining bi-allelic editing. Longer extensions further decreased on-target activity yet improved the specificity and precision of mono-allelic editing. By monitoring indels through a fluorescence-based allele-specific system and computational simulations, we identified optimal windows of Cas9 activity for a number of genome-editing applications, including bi-allelic and mono-allelic editing, and the generation and correction of disease-associated single-nucleotide substitutions via homology-directed repair. The safeguard-sgRNA strategy may improve the safety and applicability of genome editing.
    Type of Medium: Online Resource
    ISSN: 2157-846X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2878897-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages